RESOLUÇÃO DOS EXERCÍCIOS APLICADOS NA AULA PRÁTICA 1.

CAPÍTULO 1 DO LIVRO – MÉTODOS QUANTITATIVOS (pg. 46 à 50)

EXERCÍCIO 1

Em 2007, uma empresa vendeu 480 unidades de certo produto ao preço unitário de R\$ 840,00. Em 2010, vendeu 576 unidades desse mesmo produto ao preço unitário de R\$ 924,00. Determine os relativos de preço, quantidade e de valor para o produto, tomando como base o ano de 2007:

Ano base 2007

EXERCÍCIO 2

Dada a tabela seguir, representativa das vendas de determinado produto ao longo dos anos de 2006 a 2010, determine os relativos de preço, de quantidade e de valor, considerando 2007 como data-base:

Ano	Preço	Quantidade	Valor
2006	48,00	94	48 * 94 = 4.512,00
<mark>2007 - db</mark>	<mark>60,00</mark>	<mark>100</mark>	60 * 100 = 6.000,00
2008	55,20	108	55,20 * 108 = 5.961,60
2009	72,00	90	72 * 90 = 6.480,00
2010	81,60	102	81,60 * 102 = 8.323,20

Analisar as alternativas que atendem aos valores acima: veremos que só a alternativa "c" é a certa.

Para confirmar vamos calcular o relativo de valor : $v07,09 = 6.480/\frac{6.000}{6.000} * 100 = 108\%$.

EXERCÍCIOS 3, 4 e 5

A tabela a seguir mostra os preços de produtos em duas datas diferentes, com quantidades adquiridas:

Produtos	Unidade	Preço 1	Quant. 1	Preço 2	Quant. 2
ovos	dúzia	2,00	4	2,20	3
cerveja	lata	0,85	24	1,08	24
carne	kg	8,90	5	9,90	8
pão	50 g	0,15	20	0,18	30
Σ		11,90		13,36	

Primeiro devemos fazer uma tabela com os valores por data e os relativos de preço, quantidade e valor.

	Va	lor	Relativo			
Produto	Data 1	Data 2	preço	quantidade	valor	
	Preço1 * Quant.1	Preço2 * Quant.2	Preço2/Preço1 * 100	Qte2 /Qte1 * 100	Valor d2/Valor d1 * 100	
ovos	2,00 * 4 = 8,00	2,20 * 3 = 6,60	2,20/2,00 * 100 = 110%	3/4 * 100 = 75%	6,60/8,00*100 = 82,5%	
cerveja	0,85 * 24 = 20,40	1,08 * 24 = 25,92	127,06%	100%	127,06%	
carne	44,5	79,2	111,24%	160%	177,98%	
pão	3	5,4	120,00%	150%	180,00%	
Σ	75,9	117,12	468,30%	485%	567,54%	

EXERCÍCIO. 3 =>Índice aritmético de preços (Sauerbeck): Sa = \sum (f * Xc/Xb)/ \sum f

É igual a soma dos relativos de preço, dividido pela quantidade de produtos da cesta, então temos: 468,30/4 = 117,075 ou arredondando fica = 117,08

EXERCÍCIO. 4 => Índice geométrico de quantidade (Sauerbeck) : Sg =
$$\sqrt[\Sigma f]{\left(\pi * \frac{Xc}{Xb}\right)f}$$
 * 100

$$Sgq = \sqrt[4]{(3/4 * 24/24 * 8/5 * 30/20)} * 100 = \sqrt[4]{0.75 * 1 * 1.6 * 1.5} * 100 = \sqrt[4]{1.8} * 100 = > 0$$

Sgq = 115,83%

EXERCÍCIO. 5 => Índice harmônico de valor (Sauerbeck) : Sh = $\left[\sum f/\sum (f*Xb/Xc)\right]*100$

Shv =
$$[4/(8/6,6 + 20,40/25,92 + 44,5/79,2 + 3/5,4)] * 100$$

Shv =
$$[4/(1,21+0,79+0,56+0,56)] * 100 = 4/3,12 * 100 =>$$

Shv = 128,21% Como usamos duas casas decimais, devemos escolher o valor mais próximo de nosso resultado.

EXERCÍCIOS 6 e 7

Dada a cesta de produtos representada na tabela a seguir, determine a participação relativa dos ovos no custo total da compra, na data 1. Observe que a compra foi realizada em duas datas diferentes, com a quantidade mantida constante:

item	Produto	Unidade	q ⁱ	p ⁱ ₁	p ⁱ ₂	p ⁱ 1*q ⁱ	p ⁱ 2*q ⁱ
1	batata	kg	5	2,50	1,94	<mark>12,50</mark>	<mark>9,70</mark>
2	farinha	kg	3	2,10	2,48	<mark>6,30</mark>	<mark>7,44</mark>
3	ovos	dúzia	8	3,20	2,90	<mark>25,60</mark>	<mark>23,20</mark>
4	azeite	litro	4	8,20	9,90	<mark>32,80</mark>	<mark>39,60</mark>
Σ						<mark>77,20</mark>	<mark>79,94</mark>

A primeira ação a ser tomada é o preenchimento da tabela acima, ou seja, calcular os valores de cada produto, em relação ao preço:

EXERCÍCIO. 6 => qual participação dos ovos no custo total na data 1?

Total da compra na data 1 = 77,20

Participação dos ovos nessa data1 é igual a 25,60

Então essa participação será: 25,60 / 77,20 = 0,3316 que vezes 100, nos dará em porcentagem => 0,3316 * 100 = 33,16%

EXERCÍCIO. 7 => Qual participação da farinha no custo total na data 2?

Total de compra na data 2 = 79,94

Participação da farinha nessa data2 é igual a 7,44

Então essa participação será: 7,44 / 79,94 = 0,0931 que vezes 100, nos dará em porcentagem => 0,0931 * 100 = 9,31%

EXERCÍCIOS 8, 9 e 10

Dada a tabela a seguir, calcule os índices pedidos nos exercícios 8, 9 e 10.

item Produto Unidade Quant. 1 Preço 1 Quant. 2 Preço
--

1	gasolina	litro	40	2,04	50	2,20
2	óleo	litro	5	3,40	10	3,89
3	morangos	caixa	8	3,00	10	1,99

EXERCÍCIO. 8 => Índice de Laspeyres de preço => $Lp^{i}_{1,2} = \sum p_2 * q_1 / \sum p_1 * q_1$

$$Lp_{1,2}^{i} = 2,20*40 + 3,89*5 + 1,99*8 / 2,04*40 + 3,40*5 + 3,00*8 = 123,37/122,6 = 1,0063$$

EXERCÍCIO. 9 => Índice de Laspeyres de quantidade => $Lq_{1,2}^i = \sum p_1 * q_2 / \sum p_1 * q_1$

$$Lq_{1,2}^{i} = 2,04*50 + 3,40*10 + 3,00*10 / 2,04*40 + 3,40*5 + 3,00*8 = 166 / 122,60 = 1,3540$$

EXERCÍCIO. 10 => Índice de Laspeyres de valor => $Lv^{i}_{1,2} = \sum p_2 * q_2 / \sum p_1 * q_1$

$$Lv^{i}_{1,2} = 2,20*50 + 3,89*10 + 1,99*10 / 2,04*40 + 3,40*5 + 3,00*8 = 168,80 / 122,60 = 1,3768$$

EXERCÍCIOS 11, 12 e 13

Dada a tabela a seguir, calcule os índices pedidos nos exercícios 11, 12 e 13.

item	Produto	Unidade	Quant. 1	Preço 1	Quant. 2	Preço 2
1	gasolina	litro	40	2,04	50	2,20
2	óleo	litro	5	3,40	10	3,89
3	morangos	caixa	8	3,00	10	1,99

EXERCÍCIO. 11 => Índice de Paasche de preço => $Pp^{i}_{1,2} = \sum p_2 * q_2 / \sum p_1 * q_2$

$$Pp_{1,2}^{i} = 2,20*50 + 3,89*10 + 1,99*10 / 2,04*50 + 3,40*10 + 3,00*10 = 168,80/166 = 1,0169$$

EXERCÍCIO.12 => Índice de Paasche de quantidade => $Pq_{1,2}^i = \sum p_2 q_2 / \sum p_2 q_1$

$$Pq_{1,2}^{i} = 2,20*50 + 3,89*10 + 1,99*10 / 2,20*40 + 3,89*5 + 1,99*8 = 168,80/123,37 = 1,3682$$

EXERCÍCIO.13 => Índice de Paasche de valor => $Pv_{1,2}^i = \sum p_2 q_2 / \sum p_1 q_1$

$$Pv_{1,2}^{i} = 2,20*50 + 3,89*10 + 1,99*10 / 2,04*40 + 3,40*5 + 3,00*8 = 168,80/122,60 = 1,3768$$

CAPÍTULO 2 DO LIVRO - MÉTODOS QUANTITATIVOS (pg. 67 à 70)

EXERCÍCIO 1

A tabela a seguir apresenta uma série de números índices cuja base é 1995.

Ano	1994	<mark>1995</mark>	1996	1997	1998	1999
1995 = 100	94,10	<mark>100,00</mark>	105,80	112,30	118,90	124,80

Altere-a, considerando como data-base o ano de 1999.

Para o acerto da tabela, deve-se: usar a seguinte fórmula: dc/db * 100, como a nova data base é 1999, o denominador (db) será 124,80 e o numerador é o índice de cada data considerada.

Então:

Para 1994 teremos: 94,10/124,80 * 100 = 75,40

Para 1995 : 100,00/124,80 * 100 = 80,13

....... até chegarmos a nova data base (1999) onde ficará assim: 124,80/124,80 * 100 = 100,00

Com isso nossa tabela atualizada obtém esses índices:

Ano	1994	1995	1996	1997	1998	<mark>1999</mark>
<mark>1999 = 100</mark>	75,40	80,13	84,78	89,98	95,27	<mark>100,00</mark>

EXERCÍCIO 3

Dados os salários nominais de um trabalhador de 1997 a 2003 e a correspondente série de números índices, determine o salário real desse trabalhador em 2003:

Ano	Salário Nominal	Índice acumulado %	Salário real
1997	370,00	100,000	370,00/100,000 * 100 = 370,00
1998	380,00	102,572	380,00/102,572 * 100 = 370,47
1999	505,00	107,149	471,31
2000	984,00	122,100	805,90
2001	1.301,00	134,930	964,20
2002	1.710,00	151,200	1.130,95
<mark>2003</mark>	2.000,00	159,800	<mark>1.251,56</mark>

Como visto no subcapítulo Deflacionamento, o valor real (Vr) = valor nominal (Vn) / Df (deflator) * 100.

Com isso devemos então calcular: Exemplo em 2000 o Vr = 984,00/122,100 * 100 = 805,8968 ou 805,90 (arredondado para duas casas) e assim por diante. Para o que o exercício pede, o valor real em 2003 é: Vr = 2.000/159,800 * 100 => Vr = 1.251,56

EXERCÍCIO 5

Duas séries de números índices foram unidas, conforme representado na tabela a seguir:

Ano	Série 1 (antiga)	Série 2	Séries 1 e 2 unidas
1984	100,00		97,56
1985	101,10		98,63
1986	101,88		99,39
<mark>1987</mark>	<mark>102,50</mark>	<mark>100,00</mark>	<mark>100,00</mark>
1988		101,80	101,80
1989		101,47	101,47
2000		102,20	102,20

Sabendo-se que 1987 foi a data-base de superposição, qual o valor do fator de modificação?

Como 1987 é a nova data-base, dividimos 100,00 (índice da série 2 na data-base), por 102,50 (índice antigo na mesma data, ou seja, índice da série 1 nessa nova data-base), o resultado será o fator de modificação, o qual deverá ser aplicado sobre os índices da série 1, para correção enquanto que os índices da série 2 ficam inalterados.

Fator de modificação = 100,00 / 102,50 = 0,9756.

Para modificação da tabela, ou seja, unir as duas séries, multiplica-se o fator encontrado (0,9756) pelo índice da série 1 na data considerada:

Em 1986 o novo índice será: 101,88 * 0,9756 = 99,39

Em 1985: 101,10 * 0,9756 = 98,63

Em 1984: 100,00 * 0,9756 = 97,56.

Prof. Douglas Agostinho.